Efficient solution for matrix-fracture flow with multiple interacting continua

Author(s):  
Edward H. Smith ◽  
Mohan S. Seth
Author(s):  
Zhechao wang ◽  
Jiafan guo ◽  
Zhejun pan ◽  
Liping qiao ◽  
Jie liu ◽  
...  

1983 ◽  
Vol 23 (01) ◽  
pp. 42-54 ◽  
Author(s):  
L. Kent Thomas ◽  
Thomas N. Dixon ◽  
Ray G. Pierson

Abstract This paper describes the development of a three-dimensional (3D), three-phase model for simulating the flow of water, oil, and gas in a naturally fractured reservoir. A dual porosity system is used to describe the fluids present in the fractures and matrix blocks. Primary flow present in the fractures and matrix blocks. Primary flow in the reservoir occurs within the fractures with local exchange of fluids between the fracture system and matrix blocks. The matrix/fracture transfer function is based on an extension of the equation developed by Warren and Root and accounts for capillary pressure, gravity, and viscous forces. Both the fracture flow equations and matrix/fracture flow are solved implicitly for pressure, water saturation, gas saturation, and saturation pressure. We present example problems to demonstrate the utility of the model. These include a comparison of our results with previous results: comparisons of individual block matrix/fracture transfers obtained using a detailed 3D grid with results using the fracture model's matrix/fracture transfer function; and 3D field-scale simulations of two- and three-phase flow. The three-phase example illustrates the effect of free gas saturation on oil recovery by waterflooding. Introduction Simulation of naturally fractured reservoirs is a challenging task from both a reservoir description and a numerical standpoint. Flow of fluids through the reservoir primarily is through the high-permeability, low-effective-porosity fractures surrounding individual matrix blocks. The matrix blocks contain the majority of the reservoir PV and act as source or sink terms to the fractures. The rate of recovery of oil and gas from a fractured reservoir is a function of several variables, included size and properties of matrix blocks and pressure and saturation history of the fracture system. Ultimate recovery is influenced by block size, wettability, and pressure and saturation history. Specific mechanisms pressure and saturation history. Specific mechanisms controlling matrix/fracture flow include water/oil imbibition, oil imbibition, gas/oil drainage, and fluid expansion. The study of naturally fractured reservoirs has been the subject of numerous papers over the last four decades. These include laboratory investigations of oil recovery from individual matrix blocks and simulation of single- and multiphase flow in fractured reservoirs. Warren and Root presented an analytical solution for single-phase, unsteady-state flow in a naturally fractured reservoir and introduced the concept of dual porosity. Their work assumed a continuous uniform porosity. Their work assumed a continuous uniform fracture system parallel to each of the principal axes of permeability. Superimposed on this system was a set of permeability. Superimposed on this system was a set of identical rectangular parallelopipeds representing the matrix blocks. Mattax and Kyte presented experimental results on water/oil imbibition in laboratory core samples and defined a dimensionless group that relates recovery to time. This work showed that recovery time is proportional to the square root of matrix permeability divided by porosity and is inversely proportional to the square of porosity and is inversely proportional to the square of the characteristic matrix length. Yamamoto et al. developed a compositional model of a single matrix block. Recovery mechanisms for various-size blocks surrounded by oil or gas were studied. SPEJ P. 42


2012 ◽  
Vol 93 (1) ◽  
pp. 147-169 ◽  
Author(s):  
Mohammadhossein Heidari Sureshjani ◽  
Shahab Gerami ◽  
Mohammad Ali Emadi

2019 ◽  
Author(s):  
Mohammad Nooraiepour ◽  
Magnus Soldal ◽  
Joonsang Park ◽  
Nazmul Haque Mondal ◽  
Helge Hellevang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document